Climate Helper Functions
Helper Module
import eratos.helpers as eratosHelpers
eratosHelpers<- reticulate::import("eratos.helpers ")
Write Metadata of found dataset list
Search variables using the write_dataset_block_meta
function which has the following definition:
write_dataset_block_meta(
fpath,
resIter,
propMap,
verbose=False
)
where,
fpath
: The file path and file name eg. "datasets.csv"resIter
: A list or iterable of eratos dataset resources, usually generated by list_dataset_blocks.propMap
: A python dictionary of dataset properties interested in default = eratosClimate.climateMetaMapverbose
: (True/False) Flag that will print the progress of the function, recommend for large n results.
Examples in Python and R are shown below.
# Create list of datasets blocks in EUR-11 Region, write them to 'datasets.csv' file.
dsblks = eratosClimate.list_dataset_blocks(adapter, cordexDomain='EUR-11')
eratosHelpers.write_dataset_block_meta('datasets.csv', dsblks, eratosClimate.climateMetaMap, verbose=True)
# Create list of datasets blocks in EUR-11 Region, write them to 'datasets.csv' file.
dsblks = eratosClimate$list_dataset_blocks(adapter, cordexDomain='EUR-11')
eratosHelpers$write_dataset_block_meta('datasets.csv', dsblks, eratosClimate$climateMetaMap, verbose=True)
File data.
You may pull the underlying file data for a given dataset by using pull_files
:
ds_res.data().pull_files(
dest,
)
where,
dest
: The destination folder for the files in the dataset.
# Get gridded data adapter.
ds_gadptr = ds_res.data().pull_files('./some/folder/')
# Get gridded data adapter.
ds_gadptr <- ds_res$data()$pull_files("./some/folder/")
Updated 8 days ago
What’s Next