Fetching Climate Datasets
Fetching Datasets
Search datasets using the list_dataset_blocks function which has the following definition:
res_list = list_dataset_blocks(
adapter,
query='*',
region=None,
scenario=None,
experiment=None,
model=None,
variable=None,
temporalFrequency=None,
lat=None,
lon=None,
cordexDomain=None,
cordexVariable=None,
cordexModelId=None,
cordexDrivingModelId=None,
cordexExperimentId=None,
cordexFrequency=None,
cordexDrivingModelEnsembleMember=None,
)
where,
adapter: The Eratos adapter used to perform the query.query: A textual search string to query the available datasets against.region: The id (String) or Eratos Resource (Object) of the region resource to match against.scenario: The id (String) or Eratos Resource (Object) of the scenario resource to match against.experiment: The id (String) or Eratos Resource (Object) of the experiment resource to match against.model: The id (String) or Eratos Resource (Object) of the model resource to match against.variable: The id (String) or Eratos Resource (Object) of the variable resource to match against.temporalFrequency: The id (String) or Eratos Resource (Object) of the time period resource to match against.lat: A latitude (Float) to match against. (WGS84)lon: A longitude (Float) to match against. (WGS84)cordexDomain: The cordex variable domain to match against (Mutually exclusive withregion).cordexVariable: The cordex variable key to match against (Mutually exclusive withvariable).cordexModelId: The cordex model id to match against (Mutually exclusive withexperiment).cordexDrivingModelId: The cordex driving model id to match against (Mutually exclusive withmodel).cordexExperimentId: The cordex experiment id to match against (Mutually exclusive withscenario).cordexFrequency: The cordex frequency key to match against (Mutually exclusive withtemporalFrequency).cordexDrivingModelEnsembleMember: The cordex model ensemble member key to match against.res_list: A list of Eratos Dataset Resources that match the query.
Examples in Python and R are shown below.
# Query for all datasets.
eratosClimate.list_dataset_blocks(adapter)
# Query for the datasets using the search string 'precipitation'
eratosClimate.list_dataset_blocks(adapter, 'precipitation')
# Query for the datasets matching the cordex variable id 'pr'
eratosClimate.list_dataset_blocks(adapter, cordexVariable='pr')
# Query for the datasets in the region TAS-10.
region_id = eratosClimate.list_regions(adapter, cordexDomain ='TAS-10')
eratosClimate.list_dataset_blocks(adapter, region=region_id[0])
# Query for the datasets with the pr, tasmax and tasmin cordex variables at 145.010 -37.826
eratosClimate.list_dataset_blocks(adapter,
cordexVariable= ['pr','tasmax','tasmin'], lon = 145.010 , lat = -37.826)
# Query for all datasets.
eratosClimate$list_dataset_blocks(adapter)
# Query for the datasets using the search string 'precipitation'
eratosClimate$list_dataset_blocks(adapter, 'precipitation')
# Query for the datasets matching the cordex variable id 'pr'
eratosClimate$list_dataset_blocks(adapter, cordexVariable='pr')
# Query for the datasets in the region TAS-10.
region_id = eratosClimate$list_regions(adapter, cordexDomain ='TAS-10')
eratosClimate$list_dataset_blocks(adapter, region=region_id[[0]])
# Query for the datasets with the pr, tasmax and tasmin cordex variables at 145.010 -37.826
eratosClimate$list_dataset_blocks(adapter, cordexVariable= ['pr','tasmax','tasmin'], lon = 145.010 , lat = -37.826)Updated 3 months ago
What’s Next
